Perfect fluids with len than extreme relativistic equation of state.

- Not very lucky, Difficult problem
- Interesting , rewards : Cosmology, collidiry wares, star interiors.
- Experience vita stat. axisymm \Rightarrow static, station my \quad racuinm \Rightarrow in stein - Maxwell
- Fluids ane difficult.
- Two simple cases \rightarrow Dust $\epsilon=P$.
- Ins spacelike or one spacelike, one timeline are different!
- other solution. Killing tensor, wablequir, $\epsilon+3 p=$ cont,

About $\epsilon=p+k$, Kramer, easy to cheat you.

- I do not believe much in my luck.
- Chandra $\Rightarrow \epsilon=p+k$, take surface orthogonal killing fields.
- Repeat Wye problem, I've pat a Weyl-type family of solution.
- Chandra's notation - Hydrodynamic equations - equation of state - stream potential.
- The Einstein equations - Gauge conditions - The vacuum case.
- $U_{(0)}, U_{(3)}, F, p$ all interns of ϕ
- Why $f=p$ simply. Because $k=0$!
- Gauge conditions for the present case: $e^{\beta}, e^{t_{3}-r}$ separable.
- Redefinition of $x^{0}, x^{3} \Rightarrow$ Fire equation on traupprency $G_{\text {. }}$
- Any weak point? Where the systems link?
- Exactly the sue as for the Weyl family.
- Different strategy \rightarrow Universal conformal factor.
- One or three families?
- b, J_{1}, λ_{2} not free prometen, gauge, simple solution.
- Simple separable solution for $\phi \sim \frac{\cos \frac{k x}{2}}{\operatorname{ais} x / 2} \frac{a r \frac{k y}{2}}{\operatorname{ary} 2}$
- Singulantios on quale sufferers.
- Not contivurork My connsidet vita $k=0$.

Perfect fluids with less than extreme relativistic equation of state.

I am not very lucky to day, I have a difficult problem to overcome I have to tell you, in the next hour or so, how to solve the Einstein equations, with two commuting killing fields, when gravity is coupled with a perfect fluid satisfying the equation of state $^{\text {th }}$ energy density $(\epsilon)=$ pressure $(p)+$ canst. (k). Obviously the problem, the approach, the strategy, depends crucially on the details of the dofferential equation. And my big problem is how to present this work, without loosing you among my - too many and too complicated equations. But not leave the room from the very beginning, if will ty my best.

Since perfect fluids is not a very popular subject in this audience, as for as I know, I nil elaborate a little bit about them. The broad problem is to do something, to get control, to salve the Einstein -perfect fluid equations with trio commuting killing fields. The problem is interesting and the rewards of the prential success outstanding : For one spacelike and one timelike killing fields, such solutions represent star interiors. For two spacelike killing fields represent inhomogeneous cosmological moolels or the interaction region of colliding gravitational and hydromapnetic plane waves. This lat application coincides with ny current interest and this is how I was motivated to po into the perfect fluids.

Before getting int the fluids lets pose for a moment and assess what we have learnt so form, particularly
in the seventies, for spacefimes with two commuting killing fields - about the stationary-axisymmetric problem.
(i) the static equations easy, the weyl solutions, described by a linear-haplace-equation. Rotation much more difficult (two orders of magnitude?) More sophisticated methods had to be used like the infinite dimensional group of transformations suggested by Geroch and completed by kinnersley and the people around him. As co the inverse scattering method proved useful, Kramer-Neugebaner.
(ii) Second message whatever can be achieved for the vacuum Einstein equations it can be easily extended to the Einstein-Maxwell electoracuum equations. Although not obviously tine for the P, D, E', sertainles applies to the transformation and the inverse scattering methods.

The fink point I want to make is that although everything naturally extends from the vacuum to the Einstein - Maxwell equatins, practically nothing extends to the perfect fluids (I am always consiotering two commuting killing fields). Genewdy fhids are bad and rumor is - Ire heard it from Chandra_ that, while the Einstein and the Moswell equation Are Goof given, the fluid equations are man made.

Among the fluids there are two caves which are simple and completely understood
(i) For stationary axionmmetric spautimes they are the dust solutions, $q=0$. The solution to the problem can be reduced to successive quadratures, achieved by winicour (1975).
(ii) For two spacelike killing fields, the extreme relativistic
fluids with $\epsilon=p$ (stiff equation of state) are easy. We hone to solve the vacuum equations (for inface orthogonal, Erst equation pure geverabey) plus a linear hyperbolic equation for the flies stream potential. The linear equation admits simple separable solutions and there is no additional difficulty thoth that required to solve the vacunm problem. For particular problons you might hare to consider which vacuum background solutions or which solutions of the linear equations to choose but although is the exact treatment of a non-linear theory, it behaves like a linear problem. It splits to a background gravitational rearm spacetime and a fluid propagating and affecting this background. The purely gravitational part of the background can be any vacuum solution.

This, the $\epsilon=p$ and two spacelike killing fields is the cone we used with Chaurm for studying the collision of prasita tional and hydrodynamic nones which remelting is the transform sion of null dust to a massive extremely relativistic perfect third. We have to admit: We hone chosen extremely relativistic perfect fhivd in the interaction region because we could handle the equations.

* One remark, I'renever seen unittey and took me sometime to realize: Contrary to the necume care, 2 spacelike killing fields or one specelike and one time like are quite olifferent conses. The reason: The fluids four velocity $u^{a}, T_{a b}=(\epsilon+p) u_{a} u_{b}-p g_{a b}$ is a timeline vector. For stationmy axisymmetric, u^{a} lies in the two-plane spanned by the two killing fields, where nothing is happening. For tho spacalike,
(4)

$$
\begin{aligned}
& R_{a b}-\frac{1}{2} R g_{a b}+\Lambda \rho_{a b}=0 \Leftrightarrow \\
& R_{a b}=(\epsilon+p) U_{a} U_{b}+\frac{1}{2}(p-\epsilon+2 \Lambda) \rho_{a b}
\end{aligned}
$$

u^{Q} is orthogonal to the two killing fields, it is tangent to the manifold of orbits, where all the action is.

The resulting equations are different in a few but crucial terms. This is the reason why the two simplest cases are different.

Except from the above two cases, practically very little hes been achieved so far for perfect fluids with tho killing fields. The standard patten is to assume, except from the two killing fields, a second rank killing tensor as well. Then everything follows, including the equation of state. And to noses surprise, is usually physical, usually $f+3 p=$ cont or $\epsilon+p=$ cont, mong sign. Althouph, very often, a third killing field is implied.
Wahlquist, Phys, Rev. 172, 1291, 1969, type D, $\epsilon+3 p=$ cont. Singulaiststre, pressie drops to zero \rightarrow exterior, but wrong behavior Q, rigid rotation.
About $\epsilon=p^{+k}$ wo months ago, kramer published a solution with $\epsilon=p+k$ equation of state, and algebraically special weyl tensor. He started from conditions on the Weyl tensor.
\otimes easy to cheat, $n=0$ and $c=p \Leftrightarrow \quad \Lambda \neq 0$ and $\epsilon=p+$ ont. And finger to say that \quad pu nd
Well, I do not believe very much in my huck. So, I wanted to specify for the very beginning the equation of state and then ty y to see how much you can po. And in discussions with Chandra, after our $E=p$ solutions, I was easily convinced that the next to try should be perfect fluids with two spacelike killing fields and $\epsilon=p+k$ equation of state. And since the real objective is to get experience on how to handle different equations of state and not how to handle rotation for the time being I will always
assume that the two killing fields are surface orthogonal. (2) So my problem was to repeat the Weyl program for $\epsilon=p+k$ fluids. As you will see, I nile present a weyl type family of solutions, characterized by the solutions of a linear hyperbolic equations. The only difference is that wage dit his part 70 years ago!
(*) I will use the notation I've learnt from chandra. Metric of the form

$$
\begin{aligned}
& \text { of the form } \\
& d s^{2}=e^{2 v}\left(d x^{0}\right)^{2}-e^{2 \psi}\left(d x^{1}\right)^{2}-e^{2 / 2}\left(d x^{2}\right)^{2}-e^{2 / 4}\left(d x^{3}\right)^{2} \text {, }
\end{aligned}
$$

$\partial / \partial x^{2}$, $\partial / \partial x^{2}$ the two killing fields,

$$
T^{i j}=(\epsilon+p) u^{i} u^{j}-p g^{i j}, \quad u^{i} u_{i}=1,(+\cdots)
$$

ϵ, p, u^{i} also presened by the tho killing fields,
\otimes Hydrodynamic equations $\quad \nabla^{i} T_{i j}=0$.
Assume an equation of state tut leave it unspecified. \exists scalar, $\quad \epsilon+p=f(\epsilon)$, set $\dot{f}_{1} / f_{2}=1 / f_{i}$

$$
u^{(0)}=u_{(0)}=e^{-v} u_{0} ; \quad u^{(3)}=-u_{(3)}=-e^{-\dot{b}_{3}} u_{3}
$$

Contracted $u^{j}\left(\nabla^{i} T_{i j}\right)$ written as total diregeence,

$$
\left[e^{\psi+f_{2}+\left.\right|_{3}} u_{(0)} f_{1}\right],-\left[\begin{array}{lll}
e^{v+\psi+\mu_{2}} & u_{(3)} f_{1}
\end{array}\right]_{13}=0
$$

Solve by $v_{+}+_{i+1}^{a}$ potential, the stream potential

$$
\begin{aligned}
& e^{\psi+\left.\right|_{2}+f_{3}} u_{(0)} f_{1}=\phi_{13} \\
& e^{v+\psi+\mu_{2}} u_{(3)} f_{1}=\phi_{0,0} .
\end{aligned}
$$

Retim to the uncontracted equation $\nabla^{i} T_{i j}=0$ two but equiralaut, only one independent, you substitute de the fluid, quantities, u_{a}, \in

$$
\left[e^{\mu_{3}-\mu_{2}-\psi-v} \phi_{, 0}\right]_{10}-\left[e^{v-\psi-k_{2}-\mu_{3}} \phi_{13}\right]_{13}=0
$$

Then the characteristics of the fluid are algebraically determined from the stream potential ϕ :

$$
\begin{aligned}
& \left.-\alpha e \mid L e \quad\left(e^{\prime} /, 3\right), 3+L e \quad\left(e^{\prime} /, 0\right), 0\right]+ \\
& +e^{v-\left.\right|_{3}}(\log x)^{2}+e^{\left\lvert\, \frac{1}{3}-v\right.}(\log x)^{2}-4(6+0)\left(4^{2}+v^{2}\right) e^{v+\mu_{3}}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& 2 \epsilon-k=e^{-2\left(\psi+\mu_{2}\right)}\left[\phi_{13}^{2} e^{-2 \mu_{3}}-\phi_{10}^{2} e^{-2 v}\right] \\
& u_{(0)}=\frac{e^{-\psi-\mu_{2}-\psi_{3}}}{\sqrt{2 \epsilon-k}} \phi_{13} ; \quad u_{(3)}=\frac{e^{-\psi-v-\mu_{2}}}{\sqrt{2 \epsilon-k}} \phi_{, 0} .
\end{aligned}
$$

Next we tum to the Einstein equations. We can impose one gauge condition involving $\left(x^{0}, x^{3}\right)$ and one among x^{2}, x^{2}. Notation $\beta=\psi+H_{2}, \quad x=e^{\mu_{2}-\psi}$. Equations

$$
\begin{aligned}
& {\left[e^{k_{3}-v}\left(e^{\beta}\right), 0\right]_{0}-\left[e^{v-h_{3}}\left(e^{\beta}\right)_{, 3}\right]_{13}=-2 k e^{\beta+v+\mu_{3}}} \\
& {\left[e^{\beta+\mu_{3}-v}(\log x)_{, 0}\right]_{, 0}-\left[e^{\beta+v-\mu_{3}}(\log x)_{13}\right]_{13}=0} \\
& \left.\beta, 0,\left(v+\beta_{3}\right)_{13}-\beta, 3\right)\left(v+\alpha_{3}\right)_{0}+\left[\beta, 0\left(r-\alpha_{2}\right)_{13}-\beta_{13}\left(v-\mu_{3}, 0-2 \beta, 03-\beta_{10} \beta_{13}\right]=\right. \\
& =\frac{x_{10} x_{13}}{x^{2}}-4(f+p) u_{(0)} u_{(3)} e^{v+f_{3}} \\
& \left.2 \beta_{13} e^{r-\mu_{3}} \frac{\sqrt{\left(v+\mu_{3}\right)_{13}}}{r}+2 \beta_{10} e^{\mu_{3}-v}\left(v+\mu_{3}\right), 0\right]+e^{r-\mu_{3}}\left[\beta_{13}^{2}+2 \beta_{13}\left(v-\mu_{3}\right)_{13}\right]+ \\
& +e^{\alpha_{3}-r}\left[\beta_{10}^{2}+2 \beta_{0}\left(\beta_{3}-r\right)_{0}\right]= \\
& =2 e^{-\beta}\left\{\left[e^{\gamma-\alpha_{3}}\left(e^{\beta}\right)_{, 3}\right\}_{, 3}+\left[e^{\alpha_{3}-v}\left(e^{\beta}\right), 0\right], 0\right\}+ \\
& \left.+e^{v-\alpha_{3}}(\log x)_{13}^{2}+e^{\mu_{3}-v}(\log x)_{, 0}^{2}-4(\epsilon+p)\right)\left(u_{(0)}^{2}+u_{(3)}^{2}\right) e^{v+\mu_{3}} \text {. } \\
& {\left[e^{{t_{3}-r_{2}-\psi-v}} \phi_{, 0}\right]_{, 0}-\left[e^{v-\psi-t_{2}-r_{3}} \phi_{B}\right]_{13}=0 .}
\end{aligned}
$$

We com impose gauge conditions on $\beta=\psi+H_{2}$ and $\mu_{3}-v$.

In vacuum and electrovacunm the grange conditions are imposed compatibly with the fins equation: The most urial choia for Kerr and other simple solution,

$$
e^{\beta}=\sqrt{\left(1-y^{2}\right)\left(1-x^{2}\right)}, \quad y=x^{0}, " r=x^{3 "}, \quad e^{\left.\right|_{3} ^{\prime}-v}=\sqrt{1-y^{2}}
$$

Two objectives achieved: (i) Gauge known from the very beginning
(ii) One of the Einstein equation is taken care of. Then (lop) satisfi's a linear equation and the remaining tho equations will detemine the corporal factory $\frac{\text { quadratures }}{v+\psi_{3}}$ in the manifold of orbits, the tho-dimensional geometry orthogonal to the tho killing fields. And if the killing fields are not hypersurface orthogonal, the strategy remains the same: Gorge \rightarrow Emit potential \rightarrow conformal factor, Three separate steps.

* House what $k \neq 0$ makes, All three, gange, nom of killing field, fluid, conformal factor all coupled, not subproblenn, all should be determined simultunlously. WE CANNOT FIX THE GAUGE FROM THE BEGINNING.
- One good news, $\epsilon, p, u_{0}, u_{3}$ are not all uncnoms, all expressed interns of ϕ alone.
- Why $k=0 \Leftrightarrow E=p$ simple. Gays determined independents, loge determined independently, ϕ determined independenthy, it is exactly as for the vacuum case.

$$
v_{(0)}=\frac{}{\sqrt{\delta \phi_{t}^{2}-\Delta \phi_{n}^{2}}} \quad u_{(3)}=\frac{}{\sqrt{\delta \phi_{t}^{2}-\Delta \phi_{n}^{2}}}
$$

For the gauge conditions I ask exactly the same thing as in the vacuum case, namely that e^{β} and $e^{t_{3}-2}$ are separable in x^{0}, aud x^{3};

$$
e^{\beta}=A\left(x^{0}\right) B\left(x^{3}\right) ; \quad e^{k_{3}-v}=\frac{\Gamma\left(x^{0}\right)}{E\left(x^{3}\right)}
$$

(that one is product and the other ratio is just for eater convenience). This are chosen compatibly with the gauge fixing equation in the vacuum and electrovacumm cases, compatibly with the entire system in the present case). The orly way to try to convince you that it is not a restriction that I hove is by saying that asking for separable solutions is not a restriction in the rectum case. relatimohip between $\left(x^{0}, x^{3}\right)$ and $\left(x^{\prime}, x^{2}\right)$. They of o not arch all "what is x° and what d is $x^{3 \prime \prime}$. We make x^{0} and x^{3} prolate spheroidal $(d y)^{2}$ coordinates, $i-e$, the manifold of orbits of the form $(\cdots)\left[\frac{(d y)^{2}}{1-y^{2}}-\frac{(d \mu)^{2}}{1-r^{2}}\right]^{1-2}$, in which the kerr and the colliding ware solutions ane simple and from which I hove experience with extensions I set

$$
\frac{d x^{0}}{\Gamma\left(x^{0}\right)}=\frac{d y}{\sqrt{1-y^{2}}} \quad, \quad \frac{d x^{3}}{E\left(x^{3}\right)}=\frac{d \mu}{\sqrt{1-r^{2}}}
$$

Gauge functions $A(\eta), B(r)$, the combination $\Gamma E e^{1+r}=e^{2 \Omega}$ appear: the conformal factor and nowhere else, metric

$$
d s^{2}=e^{2 \Omega}\left[\frac{(d y)^{2}}{\Delta}-\frac{(d / 4)^{2}}{\delta}\right]-A B\left[\frac{\left(d x^{1}\right)^{2}}{x}+x\left(d x^{2}\right)^{2}\right]
$$

fluid quantities

$$
\begin{aligned}
& 2 \epsilon-k=\frac{e^{-2 \Omega}}{A^{2} B^{2}}\left(\delta \phi_{14}^{2}-\Delta \phi_{1 n}^{2}\right) \\
& U_{(0)}=\frac{\phi_{1,} \sqrt{\delta}}{\sqrt{\delta \phi_{\mu}^{2}-D \phi_{n}^{2}}} \quad U_{(3)}=\frac{\phi_{n} \sqrt{\Delta}}{\sqrt{\delta \phi_{t}^{2}-\Delta \phi_{n}^{2}}}
\end{aligned}
$$

Inthe equations we substitute the fluids quantities exclusively interns of ϕ. we get

$$
\begin{aligned}
& A\left[\frac{\sqrt{\Delta}}{A} \phi_{1 \eta}\right]_{, \eta} \sqrt{\Delta}-B\left[\frac{\sqrt{\delta}}{B} \phi_{, \mu}\right]_{, \mu} \sqrt{\delta}=0 \\
& \frac{1}{A}\left[A \sqrt{\Delta}(\log x)_{1 \eta}\right]_{1 \eta} \sqrt{\Delta}-\frac{1}{B}\left[B \sqrt{\delta}(\log x)_{, \mu}\right]_{, \mu} \sqrt{\delta}=0 \\
& \frac{(\dot{A} \sqrt{\Delta})^{\circ} \sqrt{\Delta}}{A}-\frac{(\dot{B} \sqrt{\delta})^{\circ} \sqrt{\delta}}{B}=-2 k e^{2 \Omega} \\
& \frac{2 \dot{A}}{A} \Omega_{, 1}+\frac{2 \dot{B}}{B} \Omega_{1 \eta}=\frac{\dot{A} \dot{B}}{A B}+\frac{x_{1 n} x_{1 \mu}}{x^{2}}-\frac{4 \phi_{1 n} \phi_{1, \mu}}{A^{2} B^{2}} \\
& \left.\frac{4 \dot{A} D}{A} \Omega_{M y}+\frac{4 \dot{B} \delta}{B} \Omega_{\mu}=\Delta\left(\frac{2 \ddot{A}}{A}-\frac{\dot{A}^{2}}{A^{2}}\right)+S\left(\frac{2 \ddot{B}}{B}-\frac{\dot{B}^{2}}{B^{2}}\right)-21 \eta \frac{\ddot{A}}{A}+4 \frac{\dot{B}}{B}\right)+ \\
& +\frac{1}{x^{2}}\left(\Delta x_{14}^{2}+\delta x_{, \mu}^{2}\right)-\frac{4}{A^{2} B^{2}}\left(\Delta \phi_{14}^{2}+\delta \phi_{, \mu}^{2}\right) .
\end{aligned}
$$

Weak poist? tro
Five by fire, what do you do? Here comes the curucial obsermtion, which leads to the solution.

How do you solve equation for of or $\log x$. They are total diregences

$$
[\underbrace{\frac{A B \sqrt{\Delta}}{\sqrt{\delta}}(\log x)_{i 4}}_{G, h}]_{\text {in }}=[\underbrace{\frac{A B \sqrt{\delta}}{\sqrt{\Delta}}(\log x), \mu}_{G_{14}}]
$$

introduce potential, you think you have solre, you have not becanse you haver to satiofy the integrability conditions, here

$$
\begin{aligned}
& (\log x)_{\mu y}=\frac{\sqrt{\delta}}{A B \sqrt{\Delta}} G, \mu \quad ; \quad(\log x)_{\mu \mu}=\frac{\sqrt{\Delta}}{A B \sqrt{\delta}} G_{, \mu} \Rightarrow \\
& \left(\frac{\sqrt{\Delta}}{A B \sqrt{\delta}} G_{i n}\right)_{i n}-\left(\frac{\sqrt{\delta}}{A B \sqrt{\Delta}}(\pi, \mu)_{, \mu}=0 \Leftrightarrow A\left[\frac{\sqrt{\Delta}}{A} G_{i n}\right]_{i n}-B\left[\frac{\sqrt{\delta}}{B} G, \mu\right]_{\text {忚 }} \sqrt{r}=0 .\right.
\end{aligned}
$$

The equation for the potential. Hence, we could solve only one of the two rinequations and obtain the other by quadratures:

$$
G=c \phi, \quad(\log x)_{14}=\frac{c \sqrt{\delta}}{A B \sqrt{\Delta}} \phi_{1+} \quad(\log x)_{, \mu}=\frac{c \sqrt{\Delta}}{A B \sqrt{\delta}} \phi_{14}
$$

Moreover, the R.H.S. for the equation for Ω read

$$
\left(c^{2}-4\right) \frac{\phi_{n} \phi_{t}}{A^{2} B^{2}}, \quad\left(c^{2}-4\right) \frac{1}{A^{2} B^{2}}\left(D \phi_{1 n}^{2}+\delta \phi_{, H}^{2}\right) \text {. }
$$

So, the choir $c=2$ drops ϕ, x completely out of the equation for Ω : we have $3 \times 3, \Omega, A, B, \Omega$ alpetraicales, eliminate 't, two equations for the two prese functions!

$$
\begin{aligned}
& \frac{\AA}{A}\left[\frac{(\dot{B} \sqrt{\delta})^{0} \sqrt{\delta}}{B}\right]^{\circ}-\frac{\dot{B}}{B}\left[\frac{(\dot{A} \sqrt{\Delta})^{\circ} \sqrt{\Delta}}{A}\right]^{\circ}=\frac{\ddot{A B}}{A B}\left[\frac{(\dot{B} \sqrt{\delta})^{\circ} \sqrt{\delta}}{B}-\frac{(A \sqrt{\Delta})^{\circ} \sqrt{\Delta}}{A}\right] \\
& \frac{\ddot{A} A}{A}\left[\frac{(\dot{A} \sqrt{\Delta})^{\circ} \sqrt{\Delta}}{A}\right]^{\circ}-\frac{\dot{B} \delta}{B}\left[\frac{(\dot{B} \sqrt{\delta})^{\circ} \sqrt{\delta}}{B}\right]^{\circ}=\left[\frac{(\dot{A} \sqrt{\Delta})^{\circ} \sqrt{D}}{A}-\frac{(\dot{B} \sqrt{\delta})^{\circ} \sqrt{\delta}}{B}\right] \times \\
& \times\left\{\left(\frac{\ddot{A}}{A}-\frac{\dot{A}^{2}}{2 A^{2}}\right)+\delta\left(\frac{\ddot{B}}{B}-\frac{\dot{B}^{2}}{2 B^{2}}\right)-\left(\eta \frac{\dot{A}}{A}+\mu \frac{\dot{B}}{B}\right)\right\}
\end{aligned}
$$

Neat point.
Both think order, very non-linear equation. But $A=A(n), B=B(1)$, so the system is over tetemined and It can be solved. Three families, I will show you me,

$$
A=\frac{1}{\cos ^{2}\left(c \arcsin y+J_{1}\right)}, \quad B=\frac{1}{\cos ^{2}\left(c \arcsin \mu+\lambda_{2}\right)}
$$

Then Ω algebraically from A, B, then solve the linear equation for of (it admits simple separable solution) then determine $(\log x)$ by quadratures. or, solve linear equation for $(\log x)$, the gravitational feed and detemin the fluid (ϕ) by quadratures.

The situation is exactly the same as for the well family of static solutions. We have a linear equation (Laplace there, hyperbolic here), we know how to solve (simple solutions by separation of variables) and for each particular cause me have to decide which solutions of the linear equations to choose.

The solution will give $\log x)$ and the remaining of the problem can be completed by quadratures. But the strategy is different: For Weal fins $\log x$, then the conformal factor, now the corporal factor is eleternined ad initio, the same for the entire family, they $\log x$ and quadratures for the specification of the fluid.

Remands:
((i)) Actually, three families of solutions. Also,

$$
\begin{array}{ll}
A=\frac{1}{\operatorname{sh}^{2}\left(c \arcsin y+J_{1}\right)}, & B=\frac{1}{\operatorname{sh}^{2}\left(\left(\arcsin t+J_{2}\right)\right.} \\
A=\frac{1}{\left(J_{1}-\arcsin y\right)^{2}}, & B=\frac{1}{\left(\lambda_{2}-\arcsin t\right)^{2}}
\end{array}
$$

They can be mapped one to the other but for ranges of coordinates which do not overlap, thy just corer different intervals. So, are they one or three families?
(iii) $c, \lambda_{1}, \lambda_{2}$ ane not free parameters, they can be gauged ont if you go to two-geometry $\left.\sim(\mid d x)^{2}-(d y)^{2}\right)$, They mercy represent different ways you cam then go to $\frac{(d)^{2}}{1-y^{2}}-\frac{\left(d p^{2}\right.}{1-p^{2}}$. But I want to keep them because for particular values of them I get some very simple gauge functions remember the complicated they had to satisfy).

Reason, $\cos ^{2}\left(c\right.$ arsing $\left.d_{i}\right)$ for c multiplia of $1 / 2$, $J_{i}=0, \pm \frac{\pi}{4}, \pm \frac{\pi}{2}$ we get algebraic, even rational function. Examples

$$
\begin{aligned}
& \left(A=\frac{1}{1 \pm \eta}, B=\frac{1}{1 \pm r}\right) ; \quad\left(A=\frac{1}{1 \pm \eta}, B=\frac{1}{1 \pm \sqrt{1-r^{2}}}\right), \\
& \left(A=\frac{1}{1 \pm \sqrt{1-\eta^{2}}}, B=\frac{1}{1 \pm \sqrt{1-r^{2}}}\right) ; \quad\left(A=\frac{1}{\eta^{2}}, B=\frac{1}{r^{2}}\right) \\
& \left(A=\frac{1}{1-\eta^{2}}, B=\frac{1}{1-r^{2}}\right) ; \quad\left(A=\frac{1}{\eta^{2}\left(1-\eta^{2}\right)}, \quad B=\frac{1}{\left(L-u \eta^{2}\right)^{2}}\right)
\end{aligned}
$$

symmetrical and asymmetrical choices because c the same but J_{1} and J_{2} different.
(iii) Ven simple solution, $x=c$ aresing $+t_{1}, \quad y=c \operatorname{arsin} h+v_{2}$, $\phi \sim \frac{\cos k_{0} \frac{x}{2}}{\cos \frac{x}{2}} \frac{\cos \left(\frac{y}{2}\right)}{\operatorname{con} \frac{y}{2}}$, not conglete investigation, depends ${ }^{(r}$
for what you nous to use them.
(iv) Although I have not nosed out systematically through the differrent particular solutions (hake my word, it toes not, as usually, means that I've tried and I make it to work; Really I hare not gone throuplysystemationlly) we can already draw some general conclusions if we are going to use these solytions for the description of the interaction regin of colliding gravitational and hydromagnetic wares.

The big question I am currently interested is whether colliding plane waves in Gen. Relativity focus or not, Old story, they focus on three-dimensional spacelike surfaces, new story, much len, on two dimensional time lice swfaces? Which is the prevailing mode of focuring?

And are they the only ones or other possibilities may arise?

The present family of solutions points towards a third posibility.

The general forme of the metric is simple enough so that we can easily set up a Neuman-Penrose null tetrad and evaluate the Weyl and the Ricci scalan. They would depend on the gauge functions A, B, the conformal factor Ω, and norm of the killing field x. Now we know A, B, Ω universally, for the entire family and we can simplify. Ψ_{2} simplifies considerably

$$
\Psi_{2} \sim \frac{(\text { solution })}{(\text { family }} \quad \text { and it predicts curvature }
$$

singularities on null sinfresces. Possibly you can eliminate them by chosing suitably the particular soletions but if you do get some, they will be on null surfaces, $u=$ cont, $v=$ croat, not necessarily $u=t$ or $v=1$. (ertainly I have to do more wine on that.
(1) A slight disadvantage: We started with $\epsilon=p+k$ but eventually k caube absorbed to a gauge and the only crucial is whether $k=0,+1$ or -1 . So, the present family is not continuously connected to the $\epsilon=p$ solutions, so we cannot follow and see how the change is the place of focusing occurs.
(vi) For stationary axisymmetric spacetimes I expect a similow theory to hold for $p=$ cont equation of state. So, d is not rerymuch interesting for stellar interiors, except if you want to approximate stan wits layers of constant pressie. But abe ne stile do not have rotation.
Future: Again surface orthogonal and other simple equation of state

- What it gives for inhomogeneom cosmological models and for coeliollng nares
- Non -hypersurforce orthogonal killing fields, something like ripid rotation. $u^{(4)} / u^{\prime}(t)=$ cont.

But the really mostly interesting remelt, for me, was the conviction that we may even hare to change strategy:

First the conformal factor and then the nom (and the twist) of the killing field.
(vii) By assuming $G=c \phi$, we do hot home the general solution of the $E=p+k$ equations, but just a big enuring family (or three families).

$$
\begin{aligned}
& d s^{2}=e^{2 v}\left(d x^{0}\right)^{2}-e^{2 \psi}\left(d x^{1}\right)^{2}-e^{2 / 2}\left(d x^{2}\right)^{2}-e^{2 / 3}\left(d x^{3}\right)^{2} \\
& \left(\partial / \partial x^{1}\right)^{a},\left(\partial / \partial x^{2}\right)^{a} \text { : killing fielols. } \\
& T_{a b}=(\epsilon+p) u_{a} u_{b}-p g_{a b}, \quad u^{a} u_{a}=1 . \\
& \nabla^{a} T_{a b}=0 .
\end{aligned}
$$

Equation of $\quad \epsilon+p=f(\epsilon)$
state: : $\quad \frac{\dot{f}_{1}}{f_{1}}=\frac{1}{f}$

$$
\begin{aligned}
& \underbrace{e^{v+p_{2}+p_{3}} u_{(0)} f_{1}}_{\phi_{13}}],-[\underbrace{e^{v+\psi+p_{2}} u_{(3)} f_{1}}_{\phi_{, 0}}]_{13}=0 \\
& {\left[e^{p_{3}-p_{2}-\psi-v} \phi_{, 0}\right]_{, 0}-\left[e^{v-\psi-p_{2}-p_{3}} \phi_{, 3}\right]_{13}=0 .}
\end{aligned}
$$

for $\epsilon=p+k$
lire wave equation

$$
\begin{aligned}
& 2 \epsilon-k=e^{-2\left(\psi+r_{2}\right)}\left[\phi_{13}^{2} e^{-2 /_{3}}-\phi_{10}^{2} e^{-2 v}\right] \\
& u_{(0)}=\frac{e^{-\psi-r_{2}-r_{3}}}{\sqrt{2 \epsilon-k}} \phi_{13} \\
& u_{(3)}=\frac{e^{-\psi-v-r_{2}}}{\sqrt{2 \epsilon-k}} \phi_{, 0}
\end{aligned}
$$

$$
\begin{aligned}
& d s^{2}=e^{2 v}\left(d x^{-0}\right)^{2}-e^{2 \psi}\left(d x^{1}\right)^{2}-e^{2 / 2}\left(d x^{2}\right)^{2}-e^{2 / 3}\left(d x^{3}\right)^{2} \\
& \beta=\psi+h_{2}, \quad x=e^{t_{2}-\psi} \\
& \int_{0}^{*}\left[e^{p_{3}-v}\left(e^{\beta}\right)_{0}\right]_{, 0}-\left[e^{v-r_{3}}\left(e^{\beta}\right)_{, 3}\right]_{13}=-2 k e^{\beta+v+p_{3}} \\
& 3 /\left[e^{\beta+r_{3}-v}(\log x)_{0}\right]_{0}-\left[e^{\beta+v-r_{3}}(\log x)_{\beta 3}\right]_{13}=0 \\
& \beta_{, 0}\left(v+p_{3}\right)_{13}+\beta_{13}\left(v+p_{3}\right)_{, 0}+\left[\beta_{, 0}\left(v-t_{3}\right)_{13}-\beta_{13}\left(v-p_{3}\right)_{, 0}-\right. \\
& \left.-2 \beta_{103}-\beta_{10} \beta_{13}\right]= \\
& =\frac{x_{, 0} x_{13}}{x^{2}}-4(\epsilon+p) u_{(0)} u_{(3)} e^{v+h_{3}} \\
& 2 \beta_{13} e^{v-r_{3}}\left(v+t_{3}\right)_{13}+2 \beta, 0 e^{t_{3}-v}\left(v+t_{3}\right)_{, 0}+[\cdots \cdot \cdot] \\
& =e^{v-r_{3}}(\log x)_{13}^{2}+e^{t_{3}-v}(\log x)_{0}^{2}- \\
& -4(\epsilon+p)\left[u_{(0)}^{2}+u_{(3)}^{2}\right] e^{r+r_{3}} \\
& \text { 解 }\left[t_{3}-r_{2}-\psi-v, \phi_{, 0}\right]_{0}-\left[e^{v-\psi-r_{2}-r_{3}} \phi_{13}\right]_{13}=0
\end{aligned}
$$

Gauge conditions on

$$
\beta=\psi+r_{2}, \quad r_{3}-r .
$$

Vacuum,
Einstein- Maxwell:

$$
e^{\beta}=\sqrt{\left(1-y^{2}\right)\left(1-r^{2}\right)}
$$

$$
\epsilon=p
$$

$$
e^{\left.\right|_{3}-v}=\sqrt{1-y^{2}}
$$

$y \sim x^{0}, \quad \vdash \sim x^{3}$
Present

$$
e^{\beta}=A\left(x^{0}\right) B\left(x^{3}\right)
$$

family:

$$
e^{p_{3}-v}=\frac{\Gamma\left(x^{0}\right)}{E\left(x^{3}\right)}
$$

$$
\begin{gathered}
\frac{d x^{0}}{\Gamma\left(x^{0}\right)}=\frac{d y}{\sqrt{1-y^{2}}} ; \frac{d x^{3}}{E\left(x^{3}\right)}=\frac{d p}{\sqrt{1-p^{2}}} \\
\binom{\text { two-dim. }}{\text { geometry }}=e^{2 \Omega}\left[\frac{(d y)^{2}}{1-y^{2}}-\frac{(d)^{2}}{1-p^{2}}\right]
\end{gathered}
$$

Metric:

$$
\begin{aligned}
d s^{2}= & e^{2 \Omega}\left[\frac{(d y)^{2}}{1-y^{2}}-\frac{(d p)^{2}}{1-\mu^{2}}\right]- \\
& -A(y) B(p)\left[\frac{\left(d x^{1}\right)^{2}}{x}+x\left(d x^{2}\right)^{2}\right]
\end{aligned}
$$

Fluid:

$$
\begin{aligned}
& 2 \epsilon-k=\frac{e^{-2 \Omega}}{A^{2} B^{2}}\left(\delta \phi_{, 1}^{2}-\Delta \phi_{1 n}^{2}\right) \\
& u_{(0)}=\frac{\phi_{1,} \sqrt{\delta}}{\sqrt{\delta \phi_{1,2}^{2}-\Delta \phi_{1 n}^{2}}} \\
& u_{(3)}=\frac{\phi_{1, n} \sqrt{\Delta}}{\sqrt{\delta \phi_{1,2}^{2}-\Delta \phi_{1 n}^{2}}} \\
& \Delta=1-\eta^{2}, \quad \delta=1-h^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Five equations - Five unknowns } \\
& \phi, x, \Omega, A, B \quad A(n), B(r) \\
& A\left[\frac{\sqrt{\Delta}}{A} \phi_{1 n}\right]_{\text {in }} \sqrt{\Delta}-B\left[\frac{\sqrt{\delta}}{B} \phi_{, 1}\right]_{, \mu} \sqrt{\delta}=0 \\
& \frac{1}{A}\left[A \sqrt{\Delta}(\log x)_{, n}\right]_{14} \sqrt{\Delta}-\frac{1}{B}\left[B \sqrt{\delta}(\log x)_{, N}\right]_{1 / 2} \sqrt{\delta}=0 \\
& \frac{(\dot{A} \sqrt{\Delta})^{\cdot} \sqrt{\Delta}}{A}-\frac{(\dot{B} \sqrt{\delta})^{\dot{0}} \sqrt{\delta}}{B}=-2 k e^{2 \Omega} \\
& \frac{2 \dot{A}}{A} \Omega_{11}+\frac{2 \dot{B}}{B} \Omega_{4}=\frac{\dot{A} \dot{B}}{A B}+\frac{x /\left(A_{3}\right)}{x^{2}} /-1 \frac{4 p_{A_{1}} \phi_{B}+}{} \\
& \frac{4 \dot{A} \Delta}{A} \Omega_{1 \mu}+\frac{4 \dot{B} \delta}{B} \Omega_{1 \mu}=\Delta\left(\frac{2 \ddot{A}}{A}-\frac{\dot{A}^{2}}{A^{2}}\right)+ \\
& +\delta\left(\frac{2 \ddot{B}}{B}-\frac{\dot{B}^{2}}{B^{2}}\right)-2\left(y \frac{\dot{A}}{A}+1 \frac{\dot{B}}{B}\right)+ \\
& +\frac{1}{x^{2}}\left(\Delta x^{2} / a+\delta \frac{x}{2}, \ldots\right)-\frac{4}{A^{2} B^{2}}\left(\Delta \phi^{2} / 4+5 \phi^{2} / 2\right) \\
& \Delta=1-\eta^{2} ; \quad \delta=1-\mu^{2} \text {. }
\end{aligned}
$$

SURPRISE!

$$
(\log x)_{1, y}=\frac{\sqrt{\delta}}{A B \sqrt{\Delta}} G_{, 1} ;(\log x)_{1,1}=\frac{\sqrt{\Delta}}{A B \sqrt{\delta}} G, y
$$

Integrability:

$$
A\left[\frac{\sqrt{\Delta}}{A} G_{, \eta}\right]_{1 \eta} \sqrt{\Delta}-B\left[\frac{\sqrt{\delta}}{B} G, \mu\right]_{, \mu} \sqrt{\delta}=0 .
$$

The equation for the stream potential ϕ !

$$
\left.\begin{array}{rl}
G & =c \phi ; \\
(\log x)_{1 y} & =\frac{c \sqrt{\delta}}{A B \sqrt{\Delta}} \phi_{, p} \\
(\log x)_{, 1} & =\frac{c \sqrt{\Delta}}{A B \sqrt{\delta}} \phi_{, y}
\end{array}\right\}
$$

Choose $\quad c= \pm 2$.

$$
\begin{aligned}
& \frac{\dot{A}}{A}\left[\frac{(\dot{B} \sqrt{\delta})^{\cdot} \sqrt{\delta}}{B}\right]^{\circ}-\frac{\dot{B}}{B}\left[\frac{(\dot{A} \sqrt{\Delta})^{\cdot} \sqrt{\Delta}}{A}\right]^{\circ}= \\
& =\frac{\dot{A} \dot{B}}{A B}\left[\frac{(\dot{B} \sqrt{\delta})^{\cdot} \sqrt{\delta}}{B}-\frac{(\dot{A} \sqrt{\Delta})^{\cdot} \sqrt{\Delta}}{A}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\dot{A} \Delta}{A}\left[\frac{(\dot{A} \sqrt{\Delta})^{\circ} \sqrt{\Delta}}{A}\right]^{\circ}-\frac{\dot{B} \delta}{B}\left[\frac{(\dot{B} \sqrt{\delta})^{\circ} \sqrt{\delta}}{B}\right]^{\circ}= \\
& =\left[\frac{(\dot{A} \sqrt{\Delta})^{\prime} \sqrt{\Delta}}{A}-\frac{(\dot{B} \sqrt{\delta})^{\prime} \sqrt{\delta}}{B}\right] \times
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{\Delta\left(\frac{\ddot{A}}{A}-\frac{\dot{A}^{2}}{2 A^{2}}\right)+\delta\left(\frac{\ddot{B}}{B}-\frac{\dot{B}^{2}}{2 B^{2}}\right)-\left(\eta \frac{\dot{A}}{A}+r \frac{\dot{B}}{B}\right)\right\} \\
& \Delta=1-\eta^{2} ; \delta=1-\mu^{2} \\
& A=A(\eta) ; B=B(1) \\
& \quad \text { OVERDETERMINED! }
\end{aligned}
$$

$$
A=\frac{1}{\cos ^{2}\left(c \arcsin y+\lambda_{1}\right)} ; \quad B=\frac{1}{\cos ^{2}\left(c \arcsin t+d_{2}\right)}
$$

Simple choices:

$$
\begin{aligned}
& \left(\frac{1}{1 \pm y}, \frac{1}{1 \pm r}\right) ;\left(\frac{1}{1 \pm y}, \frac{1}{1 \pm \sqrt{1-r^{2}}}\right) \\
& \left(\frac{1}{y^{2}}, \frac{1}{\mu^{2}}\right) ;\left(\frac{1}{1-y^{2}}, \frac{1}{1-r^{2}}\right) \\
& \left(\frac{1}{y^{2}}, \frac{1}{1-r^{2}}\right) ;\left(\frac{1}{y^{2}\left(1-y^{2}\right)}, \frac{1}{\left(1-2 \mu^{2}\right)^{2}}\right)
\end{aligned}
$$

$$
A=\frac{1}{\operatorname{sh}^{2}\left(c \arcsin y+1_{1}\right)} \quad, \quad B=\frac{1}{\operatorname{sh}^{2}\left(c \arcsin y+\lambda_{2}\right)}
$$

$$
A=\frac{1}{\left(\lambda_{1}-\arcsin y\right)^{2}} ; \quad B=\frac{1}{\left(\lambda_{2}-\arcsin 1-\right)^{2}}
$$

